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> Attacking an ensemble of models

Introduction

Methodology

Table 2: Attack success rates (%) of adversarial attacks against seven models under multi-
model setting. * indicates the white-box models being attacked.
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Figure 2: Attack success rates (%) of NI-FGSM and MI-FGSM on various number of itera-
tions. The adversarial examples are crafted on Inc-v3 model against (a) Inc-v3 model, (b) Inc-v4
model and (c¢) IncRes-v2 model.

» Comparison with classic attacks

» Attacking a single model

Table 4: Attack success rates (%) of adversarial attacks against the models. The adversarial
examples are crafted on Inc-v3 using FGSM, I-FGSM, PGD, C&W, NI-FGSM, and SI-NI-FGSM.

* indicates the white-box model being attacked.

Table 1: Attack success rates (%) of adversarial attacks against seven models under single-
model setting. The adversarial examples are crafted on Inc-v3, Inc-v4, IncRes-v2, and Res-101
respectively. * indicates the white-box attacks.
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